Modeling anisotropy and plate-driven flow in the Tonga

نویسندگان

  • Karen M. Fischer
  • E. M. Parmentier
  • Alexander R. Stine
  • Elizabeth R. Wolf
چکیده

The goal of this study is to determine whether shear wave splitting observed in subduction zone back arc regions, the Tonga subduction zone in particular, can be quantitatively modeled with flow in the back arc mantle driven by the motions of the subducting slab and the upper back arc plate. We calculated two-dimensional mantle flow models using known Tonga plate motions as boundary conditions and assuming a range of uniform and variable viscosity structures. Shear wave splitting was predicted for the anisotropy due to lattice preferred orientation (LPO) of olivine and orthopyroxene in the flow model finite strain fields. The predicted shear wave splitting provides a good match to the fast directions (parallel to the azimuth of subducting plate motion) and splitting times (0.5-1.5 s) observed in Tonga, both for models where LPO anisotropy develops everywhere above 410 km and for models where LPO anisotropy is confined to regions of relatively high stress. If LPO anisotropy does develop over the entire upper 410 km of the mantle, the strength of anistropy induced by a given amount of shear strain must be relatively weak (-4% for shear strains of 1.5, with a maximum value of-6% for very large strains). The splitting observations are comparably fit by a wide range of different viscosity models. Anisotropy due to melt-filled cracks aligned by stresses in the back arc flow models predicts fast directions roughly normal to observed values and thus cannot alone explain the observed splitting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropy and Flow in Pacific Subduction Zone Back-arcs

We have obtained constraints on the strength and orientation of anisotropy in the mantle beneath the Tonga, southern Kuril, Japan, and Izu-Bonin subduction zones using shear-wave splitting in S phases from local earthquakes and in teleseismic core phases such as SKS. The observed splitting in all four subduction zones is consistent with a model in which the lower transition zone (520–660 km) an...

متن کامل

Seismological Constraints on Structure and Flow Patterns Within the Mantle Wedge

The mantle wedge of a subduction zone is characterized by low seismic velocities and high attenuation, indicative of temperatures approaching the solidus and the possible presence of melt and volatiles. Tomographic images show a low velocity region above the slab extending from 150 km depth up to the volcanic front. The low velocities result at least partially from volatiles fluxed off the slab...

متن کامل

Stochastic Analysis of Seepage through Natural Alluvial Deposits Considering Mechanical Anisotropy

The soil is a heterogeneous and anisotropic medium. Hydraulic conductivity, an intrinsic property of natural alluvial deposits varies both deterministically and randomly in space and has different values in various directions. In the present study, the permeability of natural deposits and its influence on the seepage flow through a natural alluvial deposit is studied. The 2D Finite Difference c...

متن کامل

An Analytical Approach to the Effect of Viscous Dissipation on Shear-Driven Flow between two parallel plates with Constant Heat Flux Boundary Conditions

An investigation has been made to analyze the effects of viscous dissipation on the heat transfer characteristics for both hydro-dynamically and thermally fully developed, laminar shear driven flow between two infinitely long parallel plates, where the upper plate is moving in an axial direction at a constant speed. On the basis of some routine assumptions made in the literature, a close form a...

متن کامل

Upper- and mid-mantle interaction between the Samoan plume and the Tonga–Kermadec slabs

Mantle plumes are thought to play a key role in transferring heat from the core-mantle boundary to the lithosphere, where it can significantly influence plate tectonics. On impinging on the lithosphere at spreading ridges or in intra-plate settings, mantle plumes may generate hotspots, large igneous provinces and hence considerable dynamic topography. However, the active role of mantle plumes o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007